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Uncertainty treatment in Monte Carlo simulation
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Received 30 December 1996, in final form 12 June 1997

Abstract. Guidelines and hints are given on how to introduce an uncertainty treatment in
conformity with recent international recommendations into the Monte Carlo simulation of, for
instance, radiation particle transport processes in order to establish confidence in the results. The
main problem is how to calculate sufficiently accurately, at a justifiable computational expense,
the sensitivity coefficients of the quantities of interest with respect to numerous input quantities
involved, data and uncertainties of which are given. This problem is solved using identical
random-number sequences together with the input data slightly varied in the range determined
by the associated uncertainties. Simple examples of application are treated in detail.

1. Introduction

The Monte Carlo (MC) method is a powerful tool used in computational physics. Physical
processes, including measurements, and involved physical quantities which are of interest
and mathematically represented, for instance, by complex multidimensional integrals, can
often more easily and transparently be simulated, calculated, and investigated using the MC
method instead of experimental, analytical, or other numerical methods. In particular, MC
simulation is applied to particle transport processes, for instance, in radiation metrology,
dosimetry, monitoring, and protection. Examples are the calculation of response functions
of neutron sensors such as Bonner spheres or proportional counters, and spectrum unfolding
in neutron spectrometry. The main shortcoming of the MC method is the large amount
of computing time required since the results converge rather slowly. The MC uncertainty
vanishes in most cases proportional toN−1/2 only, whereN is the number of samples drawn
randomly. Therefore, an extensive uncertainty treatment, which should be highly obligatory
to establish confidence in the results obtained and to ensure their quality, is usually not
implemented in the MC codes at present available and often applied such as the Monte
Carlo N-Particle Transport Code System (MCNP) [1] which is widely used to simulate
radiation particle transport processes. The sensitivity analysis which has sometimes been
carried out, and the variance analysis of statistical errors already included in MCNP can
be regarded as preliminary attempts towards a comprehensive uncertainty treatment in MC
simulation. In this respect, see also the supplement to the MCNP recently published [2].

A world-wide consensus on uncertainty treatment was recently achieved and has been
laid down in the Guide to the Expression of Uncertainty in Measurement[3] of the
International Organization for Standardization (ISO), serving now as ade factostandard.
The guide is based on the recommendation INC-1 (1980) [3] of the Bureau International des
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Poids et Mesures (BIPM). The German standards DIN 1319-3 [4] and DIN 1319-4 [5] of
the Deutsches Institut für Normung (DIN) conform with the guide and the recommendation.
The first-named author himself was strongly involved in the ISO and DIN activities to
establish the guide and the above-mentioned standards. Since sufficient computing capacity
is now available, it is about time also to implement an uncertainty treatment into MC
simulation codes. This should be done in conformity with the way chosen in measurement
data evaluation since MC simulation is quite similar to measurement.

The papers [3–5] referred to above offer an uncertainty treatment in linear approximation
only. Uncertainties may also be handled conformally and more generally by applying the
Bayesian Theory of Measurement Uncertainty[6] on the basis of Bayesian statistics [7], but
this will in most cases require much more computation. Therefore, in a first step towards
introducing an uncertainty treatment into MC simulation at all, in this paper we restrict
ourselves to a first-order handling of uncertainties, also because of the large computational
expense necessary in MC simulation. The economy of computation will be one of the main
aspects of this paper. Uncertainty components due to the MC process itself as well as those
due to the uncertainties of the input quantities are taken into account.

2. Introductory, basic example

We first deal in detail with the following simple, but basic example since it already exhibits
the most important characteristics and problems of uncertainty treatment in MC calculation.
After that, no serious difficulty will remain in establishing generalizations to more complex
cases.

Let a physical quantityY of interest be given as a functionF(X) of an input quantity
X in the form of the integral

Y = F(X) =
∫ 1

0
G(X, z) dz. (1)

With a given input datumx as anestimateof the input quantityX, and withN random
numberszj independently drawn from a uniform probability density betweenz = 0 and
z = 1, the arithmetic mean of the integrand values yields an estimatey of the output
quantity Y :

y = 1

N

N∑
j=1

G(x, zj ). (2)

When this valuey and the random numberszj are taken as random variables, that is, the
meany as anestimatorof the physical quantityY , the expectation value Ey of this mean
with respect to thezj is the integral of equation (1) withx inserted forX, i.e. Ey = F(x).

The empirical variances2(y) associated with the meany is given by the well known
statistical formula

s2(y) = 1

N(N − 1)

N∑
j=1

(G(x, zj )− y)2. (3)

The expectation value of this empirical variance, also taken as a random variable similar to
y, is

σ 2(y) = Es2(y) = 1

N

(∫ 1

0
G2(x, z)dz − F 2(x)

)
. (4)
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The standard deviations(y) is used as thestandard uncertainty[3] associated with the
estimatey of the output quantityY due to the MC process. The integral in equation (4)
must exist. Otherwise, the uncertainty is infinite. This can be avoided by transforming the
integral in equation (1) using a suitable substitutionz = h(z′), also with 06 z′ 6 1. Such
a transformation can also reduce the integral in equation (4) if this integral exists, and is
therefore often called avariance reduction. Naturally, the variance can also be reduced by
enlarging the sample numberN . Obviously,σ(y) ∼ N−1/2.

There is another standard uncertainty componentu0(y) associated with the estimatey
of the output quantityY . It is due to the standard uncertaintyu(x) associated with the
given estimatex of the input quantityX. Let u(x) be given by a preceding data evaluation
according to [3–6]. Then,u0(y) = |F ′(x)|u(x) whereF ′(x) is the derivative ofF(X) with
X = x inserted. The two uncertainty componentsu0(y) ands(y) are of quite different and
independent origins. Therefore, they combine as variances of independent random variables
to form the combined standard uncertaintyu(y) associated with the estimatey of Y :

u2(y) = F ′2(x)u2(x)+ s2(y). (5)

Two significant digits of the standard uncertaintyu(y) should be determined.
The derivativeF ′(x), called thesensitivity coefficient, is in many cases not directly

available in the form of an analytical expression and must therefore also be calculated
numerically, i.e. also by the MC method. To this end, we apply the second-order
approximation

F ′(x) = F+ − F−
1x

+O(1x2) F± = F(x ± 1
21x) (6)

with an increment1x chosen as a suitable, small multiple ofu(x), i.e. 1x = αu(x). In
the following, the superscripts± always refer to the varied valuesx± = x ± 1

21x inserted
for the input variableX. Equation (6) follows from a Taylor expansion ofF(X) at x. The
remainder term in equation (6) depends on the third derivative ofF(X) in the neighbourhood
of x. Then, with estimatesy± of F±, we have

u0(y) = |y
+ − y−|
α

+O(α2) Ey± = F(x ± 1
2αu(x)). (7)

The uncertainty treatment in linear approximation as applied in this paper already requires
that F(X) is sufficiently linear in the neighbourhood ofx determined byu(x). For α of
unity order of magnitude, the remainder term of equation (7) may therefore be neglected.
Difficulties in this respect can occur ifF ′(x) = 0 or α is too large in the case of a nonlinear
F(X). However,α should be as large as is reasonable since the difference1y = y+ − y−
in equation (7) may otherwise be small and, thus, will show a large relative dispersion in a
MC calculation. We assume the two valuesy+ andy− to be obtained in two different MC
processes with the same numberN0 of samples,σ(y±) ≈ σ(y) according to equation (4),
and a correlation coefficient% associated withy+ andy−. This leads to the approximation

σ 2(1y) = 2σ 2(y)(1− %) or σ(1y)/α =
√

2C(1− %)
α
√
N0

. (8)

C denotes the large bracket in equation (4) and does not depend onα, %, andN0. The
correlation coefficient% depends on the increment parameterα.

The expressionσ(1y)/α in equation (8) is the standard deviation which is used as a
measure of the uncertainty due to the MC calculation of the leading term ofu0(y) according
to equation (7). It can be significantly reduced if% ≈ 1. This can be achieved using
strongly, positively correlated MC processes for the calculation ofy±, such as those with
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identical sequences of random numbers (for thiscorrelation sampling, see, e.g., [8]). Then,
a relatively small numberN0 of samples, compared withN in equation (2), will already
be sufficient to calculateu0(y) if α, which can disturb the correlation, is not too large.
For α = 0, all the terms ofy+ and y− according to equation (2) are identical and, thus,
% = 1. If α is replaced by−α, theny+ andy− interchange their meaning only, and% will
therefore not change, that is,% will be an even function ofα. Accordingly, assuming that
% is continuous but not necessarily differentiable forα = 0, we expect% = 1− B|α|κ for
small α with κ > 0 and a small (unknown) constantB, i.e.B|α|κ � 1 (B > 0 because of
|%| 6 1). Then (assumingα > 0 now), σ(1y)/α = (2BC/N0)

1/2ακ/2−1 will possibly be
much smaller thanσ(1y)/α = (2C/N0)

1/2α−1 for % = 0, i.e. with uncorrelated random-
number sequences used for the calculation ofy+ andy−. Forκ 6 1, % has a cusp maximum
at α = 0 which sometimes occurs. Forκ = 2 in particular,% is differentiable atα = 0, and
σ(1y)/α = (2BC/N0)

1/2 in equation (8) turns out to be essentially independent ofα. The
result obtained in this paragraph is very important and essential for the practice and economy
of MC calculations of uncertainties, especially when numerous input quantities are involved
(section 4). An approximation likeF ′(x) = (F+ − F(x))/( 1

21x) + O(1x) should not be
used instead of equation (6) since it is of first order only, buty, as an estimate ofF(x)
replacingy−, must be calculated in the same way and at the same expense of computing
asy−. The estimatey already calculated withN samples according to equation (2) is not
suitable because there is no correlation associated withy+ and thisy.

Using the Taylor expansion1y = αu(x)F ′(x) + O(α3), we obtain a more precise
approximation forσ 2(1y)/α2 with % ≈ 1 by replacingy, N , F(x), and G(x, z) in
equation (4) by1y, N0, αu(x)F ′(x), andαu(x)G′(x, z), respectively, whereG′(x, z) =
∂G(X, z)/∂X with X = x inserted:

σ 2(1y)/α2 = u2(x)

N0

(∫ 1

0
G′2(x, z)dz − F ′2(x)

)
+O(α2) (% ≈ 1). (9)

This expression can be applied ifG′(x, z) andF ′(x) are available. An exact expression
follows from

σ 2(1y) = σ 2(y+)+ σ 2(y−)− 2 Cov(y+, y−) (10)

with σ(y±) according to equation (4) and, similarly,

Cov(y+, y−) = 1

N

(∫ 1

0
G+G− dz − F+F−

)
. (11)

The reader who is familiar with MC programming should tryG(x, z) = zx as an exercise
(x > −1). This example can also be treated analytically. We obtain Ey = F(x) = 1/(x+1),
σ 2(y) = C/N = (1/(2x+1)−1/(x+1)2)/N , F ′(x) = −1/(x+1)2, andG′(x, z) = xzx−1.
For x 6 − 1

2, the integral in equation (4) does not exist. With the substitutionz = (z′)1/(x+1)

transforming the integral in equation (1), the integral in equation (4) can be made existent
and the varianceσ 2(y) even made to vanish. Equation (5) withσ 2(y) inserted fors2(y)

yields

u2(y) = u2(x)

(x + 1)4
+ x2

N(x + 1)2(2x + 1)
(x > − 1

2). (12)

For x = 1 andu(x) = 0.01, we needN = 106 MC samples to verifyy = 0.5000 with
σ(y) = 0.000 29, but onlyN0 = 104 MC samples to verify the last digit ofu0(y) = 0.0025
if the features described in the two preceding paragraphs withα = 1 are used. With
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uncorrelated random-number sequences(% = 0), the standard deviation due to the MC
calculation ofu0(y) is

σ(1y)/α =
√

2/(2x + 1)− 2/(x + 1)2

α
√
N0

(x > − 1
2; % = 0) (13)

according to equation (8), whereas identical random-number sequences yield

σ(1y)/α = u(x)
√
x2/(2x − 1)− 1/(x + 1)4√

N0
(x > + 1

2; % ≈ 1) (14)

according to equation (9). With the mentioned data inserted for the quantities, the value
σ(1y)/α = 0.000 10 obtained from equation (14) turns out to be smaller by a factor of 42
than the value calculated from equation (13). Forx 6 1

2, the integral in equation (9) does
not exist. The integral in equation (1) must then be transformed applying again a suitable
substitution of the integration variable.

3. Generalization to histories of indefinite length

We now replace the integration variablez in equation (1) by a whole sequencez =
{z1, z2, . . .} of integration variableszi and call a particular sequencezj of random numbers
a history (0 6 zi 6 1). The integral in equation (1) becomes a multiple integral of an
infinite number of dimensions. For its existence and computability, we assume that for any
history, that is, for any successive random choice of values of the integration variables,
the integrand functionG(x, z) can be calculated completely already after a particular finite
numberν of these random values has been chosen. Thus, in this sense, every history is
assumed to have its own finitelength ν. This does not mean that a finite upper bound of
the lengths of all histories exists mathematically. (Strictly speaking, the bound does exist
since indeed an extremely large, although only finite variety of possible histories can be
drawn from a pseudo-random-number generator.) MC processes involving such histories of
indefinite, but in fact finite lengths occur, for instance, when neutrons randomly entering a
shielding set-up are multiply scattered and are finally either absorbed or leave the set-up.

All the formulae of section 2 remain valid ifz is replaced by the sequencez, andzj
by zj . To achieve a strong positive correlation of the MC processes ofy+ and y−, the
corresponding histories in the calculation ofy+ and y− should follow identical random-
number sequences [8] although these histories may have different lengths. This fact can
also disturb the correlation significantly since the ‘tail’ of the longer history does not
correlate with the shorter history. This effect will increase with an increasingα, since
α also enlarges the difference betweeny+ andy−. But too small anα should not be used
because of equation (8). How to ‘synchronize’ the corresponding histories is a matter of
implementation (section 5). With very long histories, the correlation can also be disturbed
in cases where even a very small data variation results in large changes of the integrand
function or of the random path of a particle.

If random events are counted as in the following example, that is, if the integrand
G(x, z) assumes only the values 0 or 1, then, with a smallα and a relatively small number
N0, we will obtain |y+ − y−| = M/N0 for the standard uncertainty in equation (7), with
a natural numberM and thus relatively large increments 1/N0. Together with a smallα,
these can cause another difficulty. SinceG2(x, z) = G(x, z) in this case, equation (4)
readsσ 2(y) = F(x)(1− F(x))/N , andNy, as a random sum of values 0 or 1, follows a
binomial distribution with the probabilityp = F(x) 6 1 of a valueG(x, z) = 1 occurring.
Let G be the set of pointsz whereG(x, z) = 1. In the particular caseG− ⊆ G+, we have
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G+G− = 1 for z ∈ G− only, F− 6 F+, and Cov(y+, y−) = F−(1− F+)/N according to
equation (11). Then,

σ 2(1y)/α2 = (F+ − F−)(1− F+ + F−)
Nα2

% =
√
F−(1− F+)
F+(1− F−) . (15)

N1y also follows a binomial distribution.
As an example, we consider neutron reflection at a wall of reduced thicknessX

(thickness times density of scattering nuclei of the wall material times scattering cross
section) with a given estimatex and an associated standard uncertaintyu(x) given as
well. The quantity to be determined is the albedoY = limN→∞(EM/N), where EM is
the expectation value of the random numberM of reflected neutrons whenN neutrons
impinge on the wall from one side. Assuming multiple scattering inside the wall without
energy loss and absorption, and considering a one-dimensional approximation in the
direction perpendicular to the wall, we can solve the problem not only by the MC method,
but also analytically:M follows a binomial distribution with the reflection probability
Y = F(X) = X/(X + 1). This model results from a neutron conservation and transport
differential equation and is equivalent to the following MC model. The proof is omitted
here. We obtainy = M/N , Ey = F(x) = x/(x + 1), σ(y) = (x/N)1/2/(x + 1),
F ′(x) = 1/(x + 1)2, u0(y) = u(x)/(x + 1)2, and

u2(y) = u2(x)

(x + 1)4
+ x

N(x + 1)2
. (16)

With the MC method, we assume that the positionξi of a neutron at theith scattering
(taken as a reversion of the flight direction;ξ0 = 0) at a nucleus inside the wall changes by
1ξi = ± ln zi to the next scattering.1ξi is the random reduced free path of the neutron.
With each of the scattering histories of the impinging neutrons, we have eitherG(x, z) = 1
if the neutron leaves the wall on the side it has come from, i.e. its position becomes negative,
or G(x, z) = 0 if the neutron penetrates the wall, i.e. its position becomes greater thanx.
An analytical expression forG(x, z) is not known. Forx = 1 andu(x) = 0.01, we need
N = 106 MC histories to verifyy = 0.5000 with σ(y) = 0.0005, butN0 = 105 MC
histories to verify the last digit ofu0(y) = 0.0025. The enlarged valueα = 4 has been
used because of the effect described in the preceding paragraph. The standard uncertainty

u0(y) = u(x)

(x + 1)2− ( 1
2αu(x))

2
(17)

according to the leading term of equation (7), andu0(y)+σ(1y)/α are shown as functions
of α in figure 1 (the latter also for% = 0). The standard deviationσ(1y)/α associated
with u0(y) has been calculated using equation (15) since every history belonging to a
wall of particular thickness also belongs to a wall of larger thickness, thus,G− ⊆ G+.
u0(y) andσ(1y)/α have also been estimated by arithmetic means and standard deviations,
respectively, ofu0(y) values obtained from MC runs repeated 20 times. Moreover,
% = (x−/x+)1/2 = 1− αu(x)/(2x) according to equation (15) for smallα, thus,κ = 1
(section 2). Figure 1 illustrates for the example considered that identical random-number
sequences and valuesα between 1 and 10 should be preferred wheny+ and y− are
calculated.

4. Generalization to numerous quantities involved

Let X = (X1 . . . Xm)
> (> means transposition) be the set ofm input quantitiesinvolved,

represented as a column vector, estimatesx of which are taken from the pool of input
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Figure 1. Standard uncertaintyu0(y) associated with the estimatey of the output quantity and
due to the uncertainty of the input quantity. It is calculated for the example and data considered
in section 3 from equation (17) as a function of the increment parameterα (full curve). It is also
given as mean values (crosses) ofu0(y) values obtained from 20 repeated MC runs, where the
vertical cross bars show the corresponding standard deviationσ(1y)/α estimated accordingly
and associated withu0(y) due to the MC calculation. The broken curves showu0(y)+σ(1y)/α
calculated according to equation (15), the upper curve for% = 0. Valuesα between 1 and 10
should be preferred, values ofα > 200 are unsuitable.

data available. The input quantities comprise directly measured quantities, influence and
correction quantities, output quantities of preceding evaluations, and quantities the data of
which are obtained from literature. Furthermore, let theuncertainty matrixUx = (u(xk, xl))
of X also be given, which is associated with the input datax and possibly obtained from
a preceding measurement data evaluation according to [3–6].u(xk, xk) ≡ u2(xk) is the
squared standard uncertainty ofXk associated withxk, andu(xk, xl) is the joint uncertainty
component of the pairXk and Xl (k 6= l), measured by a covariance. Similarly, let
Y = (Y1 . . . Yn)

> be the column vector of then output quantitiesYk, the quantities or
parameter of interest, estimated valuesy of which are to be calculated by MC simulation
together with the uncertainty matrixUy of Y associated withy. If input or output functions
are involved, then a quantityXk or Yk of its own must be assigned to every ordinate, abscissa,
or parameter of interest, e.g. to every channel or bin. The MC random variableszi with
values 06 zi 6 1 used in succession during a particular MC history are also composed to
form the column vectorz as in section 3. Takingz as a random variable, it is assumed to
be uniformly distributed in the unit cubeC = {z|06 zi 6 1; i = 1, 2, . . .}. The dimensions
of the vectors introduced may be very large.

A functional relationship betweenX andY , called themodel and represented in the
general formY = F (X), must be available so thaty can be uniquely calculated from the
given datax, that is,y = F (x). The functionsFi forming the column matrixF need not
necessarily be given explicitly as analytical expressions, they may consist in an algorithm,
only implicitly available in the form of a given computer code such as MCNP [1], or they
may represent the whole solution procedure of an inverse problem. They may also depend
on the uncertaintyUx of the input quantities, for instance, in an adjustment procedure such
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as the least-squares method. We introduce the MC model

Y = F (X) =
∫
C
G(X, z) dz. (18)

Because of constraints involved due, for instance, to geometry or particle interaction
kinematics, the integrand vector functionG(X, z) may vanish in subregions of the unit
cubeC.

In many cases, quantities such as someQ are estimated withN histories (or samples)
of arbitrary lengths and weightswj according to

q = p

p′
=
∑N
j=1Qjwj∑N
j=1wj

. (19)

Considering all MC histories possibly involved, the nominatorp and the denominatorp′

according to equation (19) can also be taken as estimators

p = 1

N

N∑
j=1

Qjwj p′ = 1

N

N∑
j=1

wj (20)

the expectation values of which are the multi-dimensional integrals

Ep =
∫
C
Q(x, z)w(x, z) dz Ep′ =

∫
C
w(x, z) dz. (21)

Both these integrals are of the form according to equation (18) and can thus also be taken
as components ofY with X = x inserted, and the MC calculated data ofp andp′ can be
taken as components ofy. If an MC history terminates after a particular random number
zi has been drawn, thenw(x, z) can be taken as independent of the following random
numbers. If a history is excluded because of constraints, thenw(x, z) = 0 for this history.
If z is to be drawn from a probability distribution different from the uniform distribution in
C, the integral to be calculated can always be transformed into the standard form according
to equation (18), whereby the probability distribution is included intow(x, z).

The following equations are generalizations of equations (1)–(5). With the numberN

of MC samples or histories, the estimate ofY is the arithmetic mean

y = 1

N

N∑
j=1

G(x, zj ). (22)

This meany, taken as a random variable, i.e. as an estimator ofY similar to y in
equation (2), has the expectation value

Ey =
∫
C
G(x, z) dz (23)

as desired according to equation (18). The empirical covariance matrix of the mean is

Sy = 1

N(N − 1)

N∑
j=1

(G(x, zj )− y)(G(x, zj )− y)>. (24)

WhenSy is also taken as a random variable similar toy, its expectation value matrix is

ESy = 1

N

(∫
C
G(x, z)G>(x, z) dz − EyEy>

)
(25)

which converges to zero for largeN . The integral in equation (25) must exist. Every
functional valueG(x, zj ) is assumed to be computable by an algorithm with a history of a
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finite length according to section 3, although it need not be explicitly given in the form of
analytical expressions.

We now introduce thesensitivity matrixFx = (∂Fi/∂Xk), with X = x inserted.
It consists of all the partial derivatives of the output quantities with respect to all input
quantitiesX, with the given input datax inserted forX. In most cases of MC calculations,
these derivatives, too, which are the sensitivity coefficients and formFx, are not explicitly
available in the form of analytical expressions. Therefore, each of them must be calculated
numerically. This can be done as described in sections 2 and 3, similar to equation (6),
using increments1xk = αku(xk) of xk:

∂Fi

∂Xk

∣∣∣∣
X=x
= F+ik − F−ik

1xk
F±ik = Fi(. . . , xk ± 1

21xk, . . .). (26)

The sensitivity matrixFx determines the propagation of the uncertainties expressed by the
uncertainty matrixUx of the input quantitiesX. Accordingly, in linear approximation,
the contribution ofUx to the uncertainty matrixUy of the output quantitiesY is
U ′y = FxUxF>x [3–6]. This uncertainty matrixU ′y due toUx, and the MC uncertainty
matrix Sy are of different and independent origins. Thus, they combine as covariance
matrices of independent random variables to form the combined uncertainty matrixUy
associated with the estimatey of Y :

Uy = FxUxF>x + Sy. (27)

After p and p′ defined in equation (19) as components ofy, and the uncertainty
componentsu2(p), u2(p′), and u(p, p′) associated with them as components of the
uncertainty matrixUy have been calculated, the standard uncertaintyu(q) or the relative
standard uncertaintyu(q)/|q| associated with the estimateq = p/p′ of the quantityQ
according to equation (19) follows from

u2(q)

q2
= u2(p)

p2
− 2u(p, p′)

pp′
+ u

2(p′)
p′2

(28)

obtained by applying the uncertainty propagation procedure again.
Constraints involved inX, given in the formX = H(W ) with r unconstrained

parametersW (r < m), do not affect the MC calculations sinceFw = FxHw

(with Hw defined similarly toFx) and Ux = HwUwH
>
w and U ′y = FxUxF

>
x =

Fx(HwUwH
>
w)F

>
x = (FxHw)Uw(FxHw)

> = FwUwF>w . Thus,Ux can be determined
from the uncertainty matrixUw of W before the MC calculations are carried out.Ux turns
out to be singular, i.e. rankUx 6 rankUw, but this fact does not matter. If the constraints
are given in the form ofm′ equationsJ(X) = O (m′ < m; O is the zero column matrix),
chooser = m−m′ suitable components ofX to formW and solve the system of equations
for the remainingm′ components ofX. In this way,X = H(W ) is obtained again.r
of thesem equations are identities. Constraints given as inequalities cannot be taken into
account within the framework of the first-order approximation of introducing uncertainty
treatment into MC simulation as described in this paper. In such cases, the more general,
higher-order Bayesian uncertainty theory [6] should be applied.

5. Implementation

As examples of application in practice, we tried to implement an uncertainty treatment into
simple MC codes and into the very large and complex MCNP [1]. A detailed description
of the code implementations and of the experience gained could not be included in this
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theoretical paper although the material will be useful in practice. This material has therefore
been laid down in a separate document which is available from the first-named author on
request. This document also comprises hints for implementing the history synchronization—
MCNP already works with a history synchronization called ‘correlated sampling’ [1, pp 2–
140]—and generally applicable, short FORTRAN code segments for controlling the history
synchronization, the sensitivity analysis according to equation (26), and the uncertainty
propagation according to equation (27).
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